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Slip-flow boundary condition for straight walls in the lattice Boltzmann model
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A slip-flow boundary condition has been developed in the lattice Boltzmann model combining an interpo-
lation method and a simple slip boundary condition for straight walls placed at arbitrary distance from the last
fluid node. An analytical expression has been derived to connect the model parameters with the slip velocity for
Couette and Poiseuille flows in the nearly continuum limit. The proposed interpolation method ensures that the
slip velocity is independent of the wall position in first order of the Knudsen number. Computer simulations
have been carried out to validate the model. The Couette and Poiseuille flows agree with the analytical results
to machine order. Numerical simulation of a moving square demonstrates the accuracy of the model for walls

moving in both the tangential and normal directions.
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I. INTRODUCTION

The lattice Boltzmann method is a powerful tool in mod-
eling hydrodynamics and gas kinetics. Historically, it was
developed from lattice gas automata, replacing the Boolean
variables with continuous distribution functions at each lat-
tice site to avoid noise effects [1]. Later derivations revealed
that the method is a special discretization of the continuous
Boltzmann equation [2].

An important issue of this kinetic nature is the way that
special boundary conditions are imposed. In bounce-back
methods particle populations leaving the computational do-
main are reflected from a real or hypothetical boundary node
at the solid-liquid interface. It has been pointed out that the
proper choice of such a boundary node (halfway wall) can
ensure second-order accuracy in space for some simple flows
[3,15]. On the other hand several attempts have been made to
improve the bounce-back scheme for arbitrary boundaries,
for example using volumetric methods [4] or interpolation
techniques [5].

Recently, the lattice Boltzmann method has been applied
to microfluid applications [6-9]. In this case the fluid dynam-
ics differ from the conventional hydrodynamics. As the mean
free path becomes comparable with the characteristic device
size, a noticeable slip appears over the solid-liquid interface.
Similar behavior can be observed in rarefied gas flows [10].
Although at higher Knudsen number (the ratio of the mean
free path and the macroscopic size) the continuous descrip-
tion is no longer valid, the lattice Boltzmann method can
provide accurate results with its kinetic nature. It is clear that
boundary conditions applied to this phenomenon should rely
on kinetic background. Several authors use modified bounce-
back schemes taking into account reflecting and specularly
reflecting particles with different boundary treatments to en-
sure the slip condition at the wall [7,9,11]. Tang er al. have
established a discrete version of the general Maxwell-type
boundary condition [8]. All these schemes are restricted to
simple geometries, to flat walls placed at a definite position
related to the fluid nodes.

In this paper we present a modified interpolation method
which is able to model the slip-flow boundary condition for
straight walls placed at an arbitrary position. The proposed
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boundary rules ensure that the slip length is independent of
the wall position. The model is based on the kinetic back-
ground; the unknown distribution functions are determined
using the scattering kernel, which involves reflecting and
specularly reflecting interactions between the wall and the
outgoing particles. The wall movement is taken into account
by varying the incoming particle densities; we assume that
the tangential momentum of the slipping particles does not
change. An analytical formula is derived for Couette and
Poiseuille flows, which connects the model parameters with
the slip velocity; then computer simulations are carried out to
examine the model in these cases. A moving square is also
simulated, which demonstrates the accuracy of the method
for walls moving in both the tangential and normal direc-
tions.

II. FORMULATION OF THE MODEL
A. Rules of the boundary condition

Our starting point is the lattice Boltzmann model with the
single-relaxation-time approximation [12]. We choose to
work in two dimensions on a square lattice. Let f;(x,) be the
particle distribution functions at site x at time f moving in the
direction of ¢;, i=0,...,8, where the speed vectors along the
lattice links are ¢(=0, ¢;={cos[m(i—1)/2],sin[7(i—1)/2]}
for i=1,2,3,4 and ¢;=\2{coslmli-2)/2],sinlwli-2)/2]}
for i=5,6,7,8.

The distribution functions evolve according to the lattice
Boltzmann equation

71 1
f‘i(x+ci65t+5)=_fi(x’t)+_ﬁq(x’t)+pgi5' (1)

T T
Here, 7is the relaxation time, & is the time (and lattice) step,
and f7Y(x,t) denotes the equilibrium distribution function for

isothermal fluids given by Taylor expanding the Maxwellian
distribution function up to second order,

9 3
ff":E,-p(l +3cu + E(C’u)z_ Eu2> (2)

where the weights are Ey=4/9, E;=1/9 for i=1,...,4 and
E;=1/36 for i=5,...,8. The external forcing term is given
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FIG. 1. Geometry of the solid-liquid interface and the nine-
speed model, 3, 6, 7 as outcoming and 1, 5, 8 as incoming velocity
directions relating to the wall. Filled squares represent fluid nodes,
A is at half lattice spacing from the wall, and w,,w, denote the x,y
components of the wall velocity.

by g;=3E;c,g, where g is the body force per unit mass. The
macroscopic density and velocity are obtained by taking the
moments of f;,

pzzfi’ (3)

Pu=2fici~ (4)

Continuum hydrodynamic type equations modeled by this
algorithm can be determined by performing the Chapman-
Enskog procedure [13]. In the low-Mach-number approxima-
tion (ju|<c,) the continuity and the Navier-Stokes equation
are recovered in O(&%); here ¢,=1/ V3 is the speed of sound.
Then the truncation error of the discretization is taken into
account in the kinematic viscosity

V=<T—%>C?5. (5)

Next we turn to introduce a moving boundary to the
model. Let us consider a wall parallel to the y axis at an
arbitrary position x=—ad. Figure 1 shows its position, the
two neighboring fluid nodes used for the boundary condition,
and the speed directions. After the streaming process the in-
coming particles are unknown on the links for ¢,;>0. The
idea is that the outgoing particles with c,; <0 reflect from or
slip on the wall. Two parameters r,s describe the weights of
the reflecting and slipping particles; when r=1 the total
amount of particle density is reflected back. The sum of re-
flecting and slipping parts equals the total particle density;
hence r+s=1.

For moving boundaries a special treatment is needed to
ensure momentum exchange between the separated phases.
Ladd proposed to add a term to the incoming particle densi-
ties in proportion to the velocity of the boundary and the
density in the cell; the method is developed from the lattice
gas averaging of boundary-node collision rules [14]. Here,
we assume that in the direction parallel to the wall only
reflecting particles exchange momentum; slipping particles
suffer zero friction during the collision. The unknown distri-
bution functions at x=0 are defined by the following rules:

F100,1+ 8) = £5(0,1) = kf5(8,1) + Kf (8,1 + 8) + NOE pw,,
(6)
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F5(0,1+ 8) = 5£¢(0,1) = skfe(8,0) + rf(0,1) — ricf(8,1)
+ kf5(8,1+ 6) + NOEspw, + rN6Espw,,,  (7)

£5(0,2+ 8) = rfe(0,1) = ricf(8,0) + 5f7(0,1) = sxf5(8,1)
+ kf3(0, + 6) + N6Egpw, — rN6Egpw,,,  (8)

where ff(O,t) , ff(ﬁ, t) are postcollision functions at the
boundary node and the nearest-neighboring fluid node gov-
erned by the right-hand side of Eq. (1), and w,,w, are the
wall velocities in the x,y directions, respectively. In the
above equations the weights «,\ are given by

2a -1
== 9
a1 ®
2
A= . 10
2a+ 1 (10)

This method relies on the following approach. First, post-
collision distribution functions are interpolated linearly using
the information obtained from the first two fluid nodes at a
fluid point A which lies at half lattice spacing from the wall.
Second, during the streaming process these interpolated
functions are used as outgoing particles collide with the wall
and return to A as incoming particles. This collision embod-
ies reflecting and specularly reflecting interactions, and mo-
mentum exchange caused by the wall movement. Third, un-
known functions at the first fluid node are calculated using
linear interpolation involving the incoming particles and the
distribution functions at the second fluid node. It is shown
below that this choice of the interpolation ensures that the
slip length is independent of the wall position.

For a=0.5, as a special case with fixed halfway position,
the boundary conditions take the following form:

fl(o’t+5)=f§(05t)7 (11)
F50,2+ 8) = s£(0,0) + rf5(0,0) + r6Espw,,  (12)

13001+ 8) = rfe(0,1) + s£5(0,1) = r6Egpw,. (13)

B. Derivation of the slip velocity for Couette and Poiseuille
flows

In the following we apply the model to steady Couette
and Poiseuille flows. In these cases all quantities are func-
tions only of the x coordinate (we keep only this variable in
the expressions), and u,(x)=0. Then a systematic analytical
expression is derived to determine a presumed steady slip
velocity over the wall. For this purpose, we calculate the y
component of the momentum variation during the collision
at the boundary. Since pu, contains pairs of f;, we can sim-
plify the calculation by introducing new variables such that

Fo(x) = fo(x) = fa(x), (14)

Fi(x) = f5(x) = fs(x), (15)
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Fy(x) = fo(x) = f7(x). (16)

Let us consider these variables at x=0, d. The velocities are
denoted by u,(0)=uy,u,(6)=u; and the body force is as-
sumed to be along the y direction, g=gi,. In this context the
lattice Boltzmann equation Eq. (1) coupled with the momen-
tum equation Eq. (4) can be solved exactly. The y compo-
nents of the incoming and outcoming momentum pairs are
obtained by

272 2F3)T1
Fy,(0) =P<% + g(ul ~ o) = 327- l)g5+ é(2T—>l)g ),
(17)
27 2+3
Fi5(0) =P<% + g(ul ~ o) - 327 1)g5+ 6((27'—)17-)g )
(18)

In these expressions ug,u; are unknown quantities, which
can be defined by assuming a particular flow profile in re-
spect of Couette or Poiseuille flow. An additional constraint
is the boundary condition Egs. (7) and (8), which takes the
following form:

F1(0) = (1 =2r)F5(0) = (1 = 2r)kF5(8) + kF,(8) + r)\%pwy,

(19)

where F' j(x) are postcollision functions calculated from Eq.
(1).

In the case of Couette flow wuy=w,+u+aad,u,
=w,+u;+a(a+1)5, where u, is the extrapolated slip velocity
at the wall, « is the velocity gradient, and g=0. Substituting
Egs. (17) and (18) into Eq. (19), after some algebraic ma-
nipulations, we obtain the slip velocity

I\1-r
ug= (T— —) ad. (20)
2) r

For Poiseuille flow uy=u,+aad—pBa’*s, u;=u+ala+1)5
-Ba+1)*&, w,=0, and B is related to g via the Navier-
Stokes equation g=2vB. Using these conditions, after the
same calculation as in the case of Couette flow, we obtain

that
1\1- 47 57 1
us=<7'——) ra5+(———7-+——a2>,862. (21)
2) r 3 3 2

It is noticed that for the simple halfway bounce-back scheme
(a=0.5, r=1) the same result is obtained [15].

III. NUMERICAL TEST
A. Steady Couette and Poiseuille flows

Computer simulations have been performed to compare
the model with the theoretical calculation. Couette flow is
modeled in an N X 1 domain between two parallel walls; the
left-hand side is placed at x=—ad with w,>0 and the right-
hand side at x=(N—1)5+ad with wv\,=0.>0n both sidewalls
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FIG. 2. Flow profile for Couette problem with halfway wall
(@=0.5). Numerical results are plotted with empty circles for 7=1,
r=1, filled circles for 7=0.7, r=0.01, empty triangles for 7=35,
r=0.1, and filled triangles for 7=1, r=0. Analytical results are
plotted with solid lines. Theoretical limit for r—0 crosses at
uy(x)/wy=0.5.

the slip condition and on the top and bottom walls the peri-
odic boundary condition is used. The initial position is cho-
sen that u,=u,=0 and p=1 at each fluid node. The theoreti-
cal solution in the steady state is u,=0 and u, is a linear
function of x. According to Maxwell’s theory the slip veloc-
ity at the left and right walls is given by

£
26+L°

(22)

M.Y J—
— =+
wy
where £ is the slip length. In our case §=(7—0.5)¥5, and
the channel width L=(N-1+2a)é. Figure 2 shows the simu-
lated flow profiles in a 30X 1 domain for different values of
7,r; the distance of the wall from the last fluid node is
a=0.5. Points indicate the numerical results, which are in
excellent agreement with the theoretical flow profiles. The
extrapolated velocity at the wall u,, versus r can be seen in
Fig. 3. The wall distance is a=0.7. It is clearly seen that
when r— 0 the velocity at the wall u,,/w,— 0.5 according to
Eq. (22). r=0 is a singular point; the simulations give
u,=0 at all nodes. In this case all particles slip past the wall
without momentum exchange. Several simulations have been
carried out in wider domains (N=60, 120), which give the
same result; however, for the same 7,r the slip velocity is
much lower, corresponding to Eq. (22). The velocity profile
for Poiseuille flow simulated with the same domain size can
be seen in Fig. 4. The analytical curves is plotted using the
expression of the quadratic velocity profile with the con-
straint of channel symmetry. It is emphasized that the steady
state results obtained from the simulations presented here are
machine order accurate since Couette and Poiseuille flows
are exact solutions in the lattice Boltzmann model [15].

In kinetic theory the slip velocity is considered as a func-
tion of the Knudsen number, which is Kn=c,(7-0.5)/N in
our case. It can be readily seen that the slip velocity obtained
here shows clear dependence on Kn in first order. It can be
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FIG. 3. Extrapolated fluid velocity u,, at the wall versus r for
different values of 7; the distance of the wall is a=0.7. Simulated
results are presented with empty circles for 7=1, filled circles for
7=4, and empty triangles for 7=10. Analytical results are plotted
with solid lines.

shown that this behavior results from the special choice of
the interpolation in respect of the halfway position.

B. Moving square in a channel

To demonstrate the accuracy of the model for walls mov-
ing in both the x and y directions, periodic repetition of a
square moving in the direction of its diagonal in a channel is
simulated (Fig. 5). In an N X N domain the channel is con-
sidered as a square rotated by 45°. The boundary nodes at the
channel walls and the inlet and outlet are defined along a
fixed diagonal line of the Cartesian grid. At the channel walls
(2) a linear interpolation scheme [5] (the wall crosses at half
lattice spacing) is used; at the inlet and outlet (1) the periodic
boundary condition is used. The solid square with size L and
velocity w,=w,=w moves along the centerline of the chan-
nel; on its walls the slip boundary condition proposed here is
used. The position of the moving square is updated at each

0.3 p T T T T T

025 | 4

FIG. 4. Velocity profile of Poiseuille flow. The parameters are
7=2.5, r=0.4, a=0.2; empty circles for g=5e—4; filled circles for
g=1e-3; theoretical results are presented with solid lines.
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FIG. 5. Geometry of the moving square in a channel, the P point
where the extrapolated slip velocity is measured, and the continuous
path of P. (For even L the path is along a diagonal line of the grid;
in this case the extrapolation involves the two nearest-neighboring
fluid nodes lying on this path.)

time step according to its velocity. The computational algo-
rithm is as follows. (1) Calculate the postcollision distribu-
tion functions, (2) carry out the streaming process, (3) re-
write the distribution functions at the boundary nodes using
the appropriate boundary conditions (BCs), (4) calculate the
new square position, and (5) calculate the macroscopic quan-
tities. After the square has moved one lattice spacing, it is
necessary to define distribution functions at the new bound-
ary nodes appearing instantly behind the square. In this case
we use a quadratic interpolation such that

fix,1) =3fi(x +ed,t) = 3fi(x +2e5,1) + filx + 3ed,1),
(23)

where e is the unit out-normal vector at the wall. A similar
procedure is applied in Ref. [16]. The slip velocity, the dif-
ference between the tangential component of the fluid
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FIG. 6. Normalized slip velocity at P for the moving square;
empty circles for 7=5 and filled circles for 7=1. The corresponding
values of the slip velocity in the Galilean-invariant case are pre-
sented with + and X.
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velocity and w, is measured at a specified point (P) which is
exactly at the center of the front side of the square. In gen-
eral, this point lies between grid points; hence it is necessary
to extrapolate the velocity from the surrounding values. In
our case linear extrapolation is used. Figure 6 shows the
steady slip velocity for different r, 7; other parameters are
N=100, L=20, and w=1e—-3. Figure 6 also shows the values
of the slip velocity obtained from a simulation of the
Galilean-invariant counterpart. In that case the same grid is
used, the square is at rest (w=0), and the channel walls move
in the opposite direction with the same absolute velocity. The
walls of the square are fixed at half lattice spacing from the
last fluid node, Eq. (11)—(13) are applied as BCs with
wy=0, and the linear interpolation scheme on the channel
walls is modified according to their movement. The agree-
ment between the two situations is excellent. However, for
larger velocities a correction is required. Several simulations
have been performed at other parameters relating to the slip-
flow regime (0.01 <Kn<0.1) and give the same result.
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IV. CONCLUSION

To summarize, we have presented a kinetic-type boundary
condition in the lattice Boltzmann method to model slip flow
over straight walls placed at arbitrary positions. The momen-
tum exchange at the wall is taken into account by varying the
scattering kernel based on boundary-node collision rules in
lattice gases. The special interpolation with respect to the
halfway position gives a slip velocity that is independent of
the wall position in first order of the Knudsen number. Nu-
merical simulations of Couette and Poiseuille flows agree
with the derived analytical results to machine order. A com-
puter simulation of a square moving in the direction of its
diagonal shows that the model provides accurate results deal-
ing with walls moving in both the tangential and normal
directions. This suggests that the method presented here is a
valuable tool in modeling microflows or rarefied gases
[6,10]. One of the potential extensions of the model is a
boundary treatment on curved interfaces, which is currently
in progress by the author and will be reported in the future.
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